1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use std::iter::once;

use crate::Integer;
use ::comlib_common::MiniMap;
use rand::{thread_rng, Rng};

/// Computes the greatest common divisor of the given numbers.
///
/// The greatest common divisor of `a` and `b` is the largest integer which divides both `a` and `b`.
/// The function implements [Euclidean algorithm](https://en.wikipedia.org/wiki/Euclidean_algorithm).
pub fn gcd<I: Integer>(a: I, b: I) -> I {
    if b.is_zero() {
        a
    } else {
        gcd(b, a % b)
    }
}

/// Computes the least common multiple of the given numbers.
///
/// The least common multiple of `a` and `b` is the smallest integer which is divisible by both `a` and `b`.
pub fn lcm<I: Integer>(a: I, b: I) -> I {
    a * b / gcd(a, b)
}

/// Raises base to given exponent in the given modulus.
///
/// Note that it's up to the caller to ensure that the type can store (modulus-1)^2. If this is not the case, it is
/// undefined what this function returns.
pub fn mod_pow<I: Integer>(base: I, exponent: I, modulus: I) -> I {
    if exponent.is_zero() {
        I::one() % modulus
    } else if exponent.is_one() {
        base % modulus
    } else if (exponent % I::from_int(2)).is_zero() {
        let p = mod_pow(base, exponent / I::from_int(2), modulus);
        (p * p) % modulus
    } else {
        (base * mod_pow(base, exponent - I::from_int(1), modulus)) % modulus
    }
}

/// Checks whether a given number is a prime.
///
/// Implements deterministic [Miller-Rabin primality test] for all 64-bit integers.
///
/// [Miller-Rabin primality test]: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
pub fn is_prime(candidate: u64) -> bool {
    // 2 is the only even prime
    if candidate <= 2 || candidate % 2 == 0 {
        return candidate == 2;
    }

    // Write candidate as 2^r * d + 1
    let r = (candidate - 1).trailing_zeros();
    let d = candidate / 2u64.pow(r);
    debug_assert!(d % 2 == 1, "d has to be odd");
    debug_assert_eq!(2u64.pow(r) * d + 1, candidate);

    // Bases which allow testing all 64-bit numbers
    // https://miller-rabin.appspot.com/
    const BASES: [u64; 7] = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];

    'witness_loop: for &base in BASES.iter() {
        // We need to reduce the base to modulo candidate
        let base = base % candidate;
        // If the base is a multiple of the candidate, it must be that the candidate is a prime.
        if base == 0 {
            return true;
        }

        // Compute base^d mod candidate
        let x = mod_pow(base as u128, d as u128, candidate as u128) as u64;

        if x == 1 || x == candidate - 1 {
            // Possibly prime, but might be that base is just a strong liar
            continue;
        } else {
            // Repeatedly square x to find out whether it is a square root of 1
            let mut x = x;
            for _ in 0..r - 1 {
                x = ((x as u128 * x as u128) % candidate as u128) as u64;
                if x == candidate - 1 {
                    // Possibly prime
                    continue 'witness_loop;
                }
            }
        }

        // Definitely a composite number
        return false;
    }

    // Tested all necessary witnesses. It must be that the candidate is a prime
    true
}

/// Factorizes the given integer into its prime factors.
///
/// Implements [Pollard's rho algorithm] to find the factorization.
///
/// # Time complexity
/// The expected time-complexity is O(n^(1/4)).
///
/// [Pollard's rho algorithm]: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
pub fn factorize(n: u64) -> Vec<(u64, usize)> {
    let mut factors = MiniMap::new();
    let mut n = n;
    // Take all trivial twos
    while n % 2 == 0 {
        *factors.entry(2).or_insert(0) += 1;
        n /= 2;
    }

    fn factorize(n: u64, factors: &mut MiniMap<u64, usize>) {
        if n == 1 {
            // Do nothing
        } else if is_prime(n) {
            // The only factor of a prime is itself
            *factors.entry(n).or_insert(0) += 1;
        } else {
            // Use the Pollard's rho algorithm with polynomial (x^2 + c) starting at a random x and using random c.
            loop {
                let mut x = thread_rng().gen_range(1..n) as u128;
                let c = thread_rng().gen_range(1..n) as u128;
                let mut y = x;
                let n = n as u128;

                loop {
                    x = (x * x + c) % n;
                    y = (y * y + c) % n;
                    y = (y * y + c) % n;
                    let d = gcd(x.max(y) - x.min(y), n);
                    if d != 1 {
                        if d == n {
                            // Failed :E
                            // -> try with different x and c
                            break;
                        } else {
                            // d is a factor
                            factorize(d as u64, factors);
                            factorize((n / d) as u64, factors);
                            return;
                        }
                    }
                }
            }
        }
    }

    if n > 1 {
        factorize(n, &mut factors);
    }

    factors.into_inner()
}

/// Sieve of Eratosthenes.
///
/// Sieve of Eratosthenes can be quickly used to determine whether a number is a prime and to find out its prime
/// factorization.
///
/// # Time complexity
/// The construction of the sieve takes O(n log log n) time. After this checking whether a number is a prime takes O(1)
/// time and finding the factorization takes O(log n) time.
///
/// # Implementation details
/// Internally the sieve stores for each index the largest prime which divides the corresponding value. For 0 and 1 the
/// sieve stores 0 as neither is divisible by any prime.
pub struct PrimeSieve(Vec<u64>);

impl PrimeSieve {
    /// Constructs a new [`PrimeSieve`].
    ///
    /// Takes O(n log log n) time.
    pub fn new(n: u64) -> Self {
        let mut sieve = vec![0; n as usize + 1];

        for i in once(2).chain((3..=n).step_by(2)) {
            if sieve[i as usize] == 0 {
                // Found a prime, hence we need to mark all higher multiples as non-primes
                for j in (i..=n).step_by(i as usize).skip(0) {
                    sieve[j as usize] = i;
                }
            }
        }

        Self(sieve)
    }

    /// Checks whether the given number is a prime.
    pub fn is_prime(&self, n: u64) -> bool {
        if n < 2 {
            false
        } else {
            self.0[n as usize] == n
        }
    }

    /// Factorizes the given number into its prime factors.
    ///
    /// Returns the factors as pairs indicating the prime and the number of times its present in the factorization.
    /// The factorization is ordered in increasing order by the prime.
    pub fn factorize(&self, n: u64) -> Vec<(u64, usize)> {
        let mut factors = MiniMap::new();
        let mut n = n;

        while n > 1 {
            *factors.entry(self.0[n as usize]).or_insert(0) += 1;
            n /= self.0[n as usize];
        }

        factors.into_inner()
    }

    /// Turns the sieve into raw vector telling the largest prime divisor for each index.
    pub fn into_inner(self) -> Vec<u64> {
        self.0
    }
}